• Green synthesis of polyvinyl butyral

  • Dynamic interfaical tension on droplet surface

  • On-line phase separator for microflow extraction

  • Indstrial application of micromixing device

  • Group photo in 2017 summer

Research DirectionS

1. Micromixing and Microscaled Transport Phenomena

For studying the micromixing and microscaled heat/mass transfer processes, we are developing automated microfluidic platforms to explore the mixing characteristics and dynamic interfacial tension evolution in microchannels. We also propose microscaled transport models based on LBM or OpenFOAM method to reveal the basic fluid dynamic mechanisms.

2. Green Syntheses of Organics via Microreactors

Aiming at the green synthesis of fine chemicals and their intermediates, we are developing advanced flow chemistry platforms to improve product yield or selectivity, through reaction kinetics regulation or electrochemical reaction technology. We are also interested at achieving miniaturization and continuity of high-end chemical synthesis processes.

3. Microreaction Continuous Preparation of Optical Nanomaterials

For stably preparing the rare earth upconversion nanoparticles and metal nanoparticles, we develop high-temperature microreaction experimental platforms to study the nucleation growth of rules nanoparticles, and propose continuous nanomaterial preparation technologies to achieve material structure control and surface functionalization.

4. Scale-Up, Integration and Industrialization of Microreactors

For the industrial application of microreaction process, we establish the scale-up method of micro equipment, realize the coupling and matching of microreaction devices, and carry out the industrialization practice of flow chemistry technology.

Research Projects

1. National Natural Science Foundation of China,21776150,2018.1 - 2021.12
2. National Natural Science Foundation of China - Yunnan Joint Fund Key Project,U1302271,2014.1 - 2017.12
3. National Natural Science Foundation of China,21106076,2012.1 - 2014.12
4. Foundation for the Author of National Excellent Doctoral Dissertation of the People’s Republic of China,201349,2012.1 - 2016.12
5. Tsinghua University Initiative Scientific Research Program,20151080361,2016.1 - 2018.12

International Academic Awards

1. Industrial & Engineering Chemistry Research Class of Influential Researchers,2018
2. Reaction Chemistry & Engineering Emerging Investigator,2017


Cover Papers


1. Lu SY, Wang K.* Kinetic study of TBD catalyzed δ-valerolactone polymerization using a gas-driven droplet flow reactor. React Chem Eng. DOI: 10.1039/C9RE00046A. (cover paper)
2. Song J#, Zhang SL#, Wang K*, Wang YD. Synthesis of million molecular weight polyacrylamide in tubular microreactors with droplet flows. J Taiwan Inst Chem Eng. 2019; 98: 78-84.
3. Liu D, Jing Y, Wang K,* Wang YD,* Luo GS. Reaction study of alpha-phase NaYF4:Yb,Er generation via a tubular microreactor: discovery of an efficient synthesis strategy. Nanoscale. 2019; 11: 8363-8371.


1. Riaud A#, Zhang H#, Wang XY, Wang K*, Luo GS*. Numerical study of surfactant dynamics during emulsifcation in a T-junction microchannel. Langmuir. 2018; 34: 4980-4990.
2. Qin K, Wang K*, Li Y, Luo R, Wang T.* Dispersion of supercritical carbon dioxide to [Emim][BF4] with a T-junction tubing connector. Chem Eng Process. 2018; 127: 58-64.
3. Xie P, Wang K,* Zhang JS, Hu YP, Luo GS.* In Situ Removal of HBr via Microdroplets for High Selectivity Bromobutyl Rubber Synthesis in a Microreaction System. Ind Eng Chem Res. 2018; 57: 10883-10892.
4. Wang K,* Zhang HM, Shen Y, Adamo A, Jensen KF.* Thermoformed fluoropolymer tubing for in-line mixing. React Chem Eng. 2018; 3: 707-713.


1. Xie P, Wang K*, Wang PJ, Xia Y, Luo GS*. Synthesizing bromobutyl rubber by a microreactor system. AIChE J. 2017; 63: 1002-1009.
2. Liu D, Wang K*, Wang Y, Wang YD*, Luo GS. A simple online phase separator for the microfluidic mass transfer studies. Chem Eng J. 2017; 325: 342-349.
3. Yang L, Liu GT, Luo SC, Wang K*, Luo GS*. Investigation of dynamic surface tension in gas-liquid absorption using a microflow interfacial tensiometer. React Chem Eng. 2017; 2: 232–238.
4. Wang K, Luo GS*. Microflow extraction: A review of recent development. Chem Eng Sci. 2017; 169: 18-33.
5. Wang K, Li LT, Xie P, Luo GS*. Liquid-liquid microflow reaction engineering. React Chem Eng. 2017; 2: 611-627. (Most read article in 2017)
6. Lin XY, Yan S, Zhou BY, Wang K*, Zhang JS, Luo GS*. Highly efficient synthesis of polyvinyl butyral (PVB) using a membrane dispersion microreactor system and recycling reaction technology. Green Chem. 2017; 19: 2155-2163. (back cover paper)


1. Qin K, Wang K*, Luo R, Li Y, Wang T*. Interfacial tension and wetting properties of 1-ethyl-3-methylimidazolium tetrafluoroborate in carbon dioxide, from atmospheric pressure to supercritical state. J Supercritical Fluid. 2016, 116: 83-89.
2. Qiu L, Wang K*, Zhu S, Lu YC, Luo GS. Kinetics study of acrylic acid polymerization with a microreactor platform. Chem Eng J. 2016; 284: 233-239.
3. Zhou QQ, Sun Y, Yi ST, Wang K*, Luo GS. Investigation of droplet coalescence in nanoparticle suspensions by a microfluidic collision experiment. Soft Matter. 2016,12: 1674-1682.
4. Wang K*, Zhang LM, Zhang WL, Luo GS. Mass transfer-controlled dynamic interfacial tension in microfluidic emulsification processes. Langmuir. 2016, 32: 3174-3185.


1. Lin XY, Wang K*, Zhang JC, Luo GS*. Process intensification of the synthesis of poly(vinyl butyral) using a microstructured chemical system. Ind Eng Chem Res. 2015; 54: 3582–3588.
2. Wang XY, Riaud A, Wang K*, Luo GS*. Pressure drop-based determination of dynamic interfacial tension of droplet generation process in T-junction microchannel. Microfluid Nanofluid. 2015; 18: 503-512.
3. Wang PJ, Wang K*, Zhang JC, Luo GS*. Preparation of poly (p-phenylene terephthalamide) in a microstructured chemical system. RSC Adv. 2015; 5: 64055-64064.
4. Qin K, Wang K*, Li Y, Kong FH, Wang T*. High-pressure phase behavior of 1-ethyl-3-methylimidazolium tetrafluoroborate and carbondioxide system. RSC Adv. 2015; 5: 32416–32420
5. Li Y, Wang K*, Qin K, Wang T*. Beckmann rearrangement reaction of cyclohexanone oxime in sub/supercritical water: byproduct and selectivity. RSC Adv. 2015; 5: 25365–25371.
6. Wang K*, Zhang JC, Zheng C, Dong C, Lu YC, Luo GS*. A consecutive microreactor system for the synthesis of caprolactam with high selectivity. AIChE J. 2015; 61: 1959–1967.
7. Wang K*, Qin K, Lu YC, Luo GS*, Wang T. Gas/liquid/liquid three-phase flow patterns and bubble/ droplet size laws in a double T-Junction microchannel. AIChE J. 2015; 61: 1722–1734.
8. Wang K*, Qin K, Wang T, Luo GS*. Ultra-thin liquid film extraction based on a gas–liquid–liquid double emulsion in a microchannel device. RSC Adv. 2015; 5: 6470–6474.
9. Wang PJ, Wang K, Zhang JS, Luo GS*. Non-aqueous suspension polycondensation in NMP-CaCl2/ paraffin system - A new approach for the preparation of poly(p-phenylene terephthalamide). Chinese J Polym Sci. 2015; 33: 564-575. (cover paper)


1. Riaud A, Zhao SF, Wang K*, Cheng Y, Luo GS. Lattice-Boltzmann method for the simulation of multiphase mass transfer and reaction of dilute species. Phys Rev E. 2014; 89: 053308.
2. Wang XY, Wang K*, Riaud A, Wang X, Luo GS*. Experimental study of liquid/liquid second-dispersion process in constrictive microchannels. Chem Eng J. 2014; 254: 443-451.
3. Wang K, Lu Y, Luo GS*. Strategy for scaling-up of a microsieve dispersion reactor. Chem Eng Technol. 2014; 37: 2116-2122. (Hottest Articles in Chemical Engineering, Wiley)


1. Riaud A, Wang K*, Luo GS*. A combined Lattice-Boltzmann method for the simulation of two-phase flows in microchannel. Chem Eng Sci. 2013; 99: 238-249.
2. Wang K, Xie LS, Lu YC*, Luo GS*. Generation of monodispersed microdroplets by temperature controlled bubble condensation processes. Lab Chip. 2013; 13: 73-76.
3. Wang K, Xie LS, Lu YC*, Luo GS*. Generating microbubbles in a co-flowing microfluidic device. Chem Eng Sci. 2013; 100: 486-495.
4. Wang K*, Lu YC, Yang L, Luo GS*. Microdroplet coalescences at microchannel junctions with different collision angles. AIChE J. 2013; 59: 643-649.
5. Wang K*, Lu YC, Tostado CP, Yang L, Luo GS*. Coalescences of microdroplets at a cross-shaped microchannel junction without strictly synchronism control. Chem Eng J. 2013; 227: 90-96.
6. Wang K, Lu YC, Qin K, Luo GS*, Wang T. Generating gas-liquid-liquid three-phase microflows in a cross-junction microchannel device. Chem Eng Technol. 2013; 36: 1047-1060.
7. Yang L, Wang K, Mak S, Li YK, Luo GS*. A novel microfluidic technology for the preparation of gas-in-oil-in-water emulsions. Lab Chip. 2013; 13: 3355-3359. (cover paper)


1. Yang L, Wang K, Tan J, Lu YC, Luo GS*. Experimental study of microbubble coalescence in a T-junction microfluidic device. Microfluid Nanofluid. 2012; 12: 715-722.
2. Zhang JS, Wang K, Lu YC, Luo GS*. Beckmann rearrangement of cyclohexanone oxime in a microchemical system: The role of SO3 and product inhibition. AIChE J. 2012; 58: 3156-3160.
3. Zhang JS, Wang K, Lu YC, Luo GS*. Beckmann rearrangement in a microstructured chemical system for the preparation of e-caprolactam. AIChE J. 2012; 58: 925-931.


1. Wang K*, Lu YC, Xia Y, Shao HW, Luo GS*. Kinetics research on fast exothermic reaction between cyclohexanecarboxylic acid and oleum in microreactor. Chem Eng J. 2011; 169: 290-298.
2. Wang K*, Lu YC, Xu JH, Luo GS*. Droplet generation in micro-sieve dispersion device. Microfluid Nanofluid. 2011; 10: 1087-1095.
3. Wang K, Lu YC, Xu JH, Tan J, Luo GS*. Generation of micromonodispersed droplets and bubbles in the capillary embedded T-junction microfluidic devices. AIChE J. 2011; 57: 299-306.


1. Wang K, Lu YC, Tan J, Yang BD, Luo GS*. Generating gas/liquid/liquid three-phase microdispersed systems in double T-junctions microfluidic device. Microfluid Nanofluid. 2010; 8: 813-821.
2. Wang K, Lu YC, Shao HW, Luo GS*. Measuring enthalpy of fast exothermal reaction with micro-reactor-based capillary calorimeter. AIChE J. 2010; 56: 1045-1052.
3. Wang K, Lu YC, Xu JH, Luo GS*. Determination of dynamic interfacial tension and its effect on droplet formation in the T-shaped microdispersion process. Langmuir. 2009; 25: 2153-2158.
4. Wang K, Lu YC, Xu JH, Tan J, Luo GS*. Liquid-liquid micro-dispersion in a double-pore T-shaped microfluidic device. Microfluid Nanofluid. 2009; 6: 557-564.
5. Wang K, Lu YC, Shao HW, Luo GS*. Improving selectivity of temperature-sensitive exothermal reactions with microreactor. Ind Eng Chem Res. 2008; 47: 4683-4688.
6. Wang K, Lu YC, Shao HW, Luo GS*. Heat-transfer performance of a liquid-liquid microdispersed system. Ind Eng Chem Res. 2008; 47: 9754-9758.
7. Wang K, Wang YJ, Chen GG, Luo GS*, Wang JD. Enhancement of mixing and mass transfer performance with a microstructure minireactor for controllable preparation of CaCO3 nanoparticles. Ind Eng Chem Res. 2007; 46: 6092-6098.
8. Wang K, Lu YC, Xu JH, Gong XC, Luo GS*. Reducing side product by enhancing mass-transfer rate. AIChE J. 2006; 52: 4207-4213.

Book Chapters

1. Wang K, Xu JH, Liu GT, Luo GS*. Chapter three-role of interfacial force on multiphase microflow—An important meso-scientific issue. Advances in Chemical Engineering. Academic Press, Burlington. 2015, 47: 163-191.
2. Luo GS, Du L, Wang YJ, Wang K. Composite Nanoparticles. Encyclopedia of Microfluidics and Nanofluidics, Springer New York. 2015; 453-460


First Inventor

CN201510897731.5; CN201410008717.0; CN200710176045.4; CN200710176046.9

Other Inventors

CN201710093577.5; CN201610533932.1; CN201510897759.9; CN201510080040.6; CN201510405884.3; CN201510093817.2; CN201510080655.9; CN201510185307.8; CN201510239588.0; CN201510391668.8; CN201410788207.X; CN201410003275.0; CN201310553236.3; CN201310389238.3; CN201310460844.X; CN201310459654.6; CN201210380145.X; CN201210380153.4; CN201210025302.5; CN201210025400.9; CN201210003673.3; CN201210380145.X; CN201210479305.6; CN201210479303.7; CN201210279052.8; CN201210278726.2; CN201110117090.9; CN201010224892.5; CN200910086130.0; CN200810116820.1; CN200510086388.2; CN200510059635.X

Group Members




Address:Gongwu Builiding 801, Tsinghua, Haidian, Beijing, 100084, China